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ABSTRACT 

This report illustrates the numerical procedure used by the Aero- 
Astrodynamics Laboratory in  performing roll stability analyses for Saturn type 
space vehicles. Vehicle control in  the roll channel is provided by a position 
gyro and a rate gyro. The dynamics of the rate gyro are included as a separate 
equation in the equations of motion. The modes of oscillation in this system 
a r e  (I) torsion, (2) roll, (3) roll sloshing, (4) rate gyro roll, and (5) swivel 
engine. Two methods a r e  available for solving the system's eigenvalues: 
the matrix iteration method and the characteristic equation approach. In 
both cases the system is solved for  the normalized eigenvectors, which pro- 
vide additional information about the system. 

The frequency response of the system, a t  the control thrust vector 
point, can be found for a sinusoidal forcing function a t  various sensor lo- 
cations. 

The equations of motion a r e  derived in the appendix. 
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TECHNICAL MEMORANDUM x-53368 

NUMERICAL PROCEDURES FOR ROLL STABILITY STUDIES 

SUMMARY 

This report illustrates the numerical procedures used by the Aero- 
Astrodymdcs Laboratory in performing roll stability analyses for Saturn type 
space vehicles. Vehicle control in the roll channel is provided by a position 
gyro and a rate bm;r<?. djjmmics 01 the rate gyro a r e  included as a separate 
equation in the equations of motion. The modes of oscillation in the system are 
(I) torsion, (2) roll, (3)  roll sloshing, (4) rate gyro roll, and (5) swivel 
engine. Two methods are available for solving the system's eigenvalues: the 
matrix iteration method and the characteristic equation approach. In both 
cases the system is solved for the normalized eigenvectors, which provide 
additional information about the system. 

The frequency response of the system, at the control thrust vector point, 
can be found for  a sinusoidal forcing function at various sensor locations. 

The equations of motion are derived in the appendix. 

INTRODUCTION 

The stability analysis of an elastic space vehicle requires the eigenvalues 
for the solution of a set of linear, homogeneous differential equations. These 
differential equations describe the dynamics of the space vehicle and the 
characteristics of the control system. 

The solution is readily obtainable for a simple system, but it is difficult 
for systems with a more complex control system and large numbers of oscilla- 
ting modes because of the hi& order of the characteristic equation and the large 
magnitude of the coefficients. 

To adequately describe the vehicle characteristics, the following modes 
of oscillation are included in the system: 



torsion ( 7) 
roll ( 6) 
roll sloshing ( t s )  
rate gyro roll ( Or) 
swivel engine ( P  e) 

The control command equation, including transfer functions for all filters and 
the actuator characteristics, is the final equation. 

Two numerical methods are presented for solving the system's eigen- 
values: the characteristic equation and the matrix iteration approaches. In 
both cases, the system is solved for the normalized eigenvectors, which provide 
additional information about the system. 

GENERAL APPROACH 

Basic Equations I 
The equations of motion, the control equation, and the equation describing 

the response characteristics of the rate gyro are homogeneous, linear differen- 
tial equations. These equations are transformed into a set  of homogeneous, linear 
simultaneous algebraic equations by assuming solutions of time dependency in 
the form est by which all differential quotients with respect to time are replaced 
by the complex operator. 

s = a + i w .  (1) 

With the coordinate ( o r  unknowns) denoted as Xj( j = I, 2,3, . . . , n) and 
the coefficients of X. as dij ( s) (i, j = 1,2,  . . . , n) , the set of equations reads J 

x = o  d i i (s)xl  + 12(  s) x2+. . . . . + d in ( s )  n 

x = o  d 21(s)xl + 22( s)  x2+. . . . . + d2n(s) n 

. . .  . . .  . . . . .  . . .  = O  

X 2 + .  . . . . + d  x = o  . 
ni(s)xl + d ( S )  m(s) n 

d 

2 



I 

To keep a consistent flow of data from other programs needed in equation 
(2) , the following order and definitions of the X. and equations are used 
throughout: J 

Number (i) Definition symbol 

1-2 Torsional modes 7.  1 

3 Roll e 

4-5 

6 

7 

8 

Roll sloshing 

Rate gyro roll 

Swivel engine 

Control 

5 si 

r 

'e 

'C 

e 

By using matrix notation, equation (2) can be more conveniently ex- 
pressed in the form 

where all the elements of the matrix D except the nth row have the form 
(s) 

d.. = s2A.. + sB.. + C.. 
11 ( s) 11 1J 1J 

( i  = 1 -n - 1) ( j  = 1 -n) 

and the elements for the nth row, which describe the control equation and the 
filter characteristics, as 

( j = 1  - n ) .  

3 



The transfer functions T a r e  of the form 
j(s) 

With the general equation ( 3 )  in  this form, two basic approaches a r e  
available for determining the eignevalues [ 11 : ( I) the matrix iteration and 
( 2 )  the characteristic equation approach. (The characteristic equation is ob- 
tained by expanding the determinant and solving for its roots.) Once the roots 
(eigenvalues) a r e  determined, it is important to solve for the eigenvector for 
additional information. This is done by assuming a value for the engine deflec- 
tion command angle (X o r  p ) and solving for the resulting eigenvector. 

Usually the eigenvectors a r e  normalized to X or  p equal to one. 
n C 

n C 

Matrix Iteration for Obtaining Eigenvalue 

Equation ( 3 )  , written as 

D {X.} = 0, 
(S) 3 

states the transformed equation of the system in matrix form. The problem is 
to find nontrivial values of s and (X.) that ‘satisfy equation ( 3 )  . The eigenvalue 

prddem is nonlinear because the coefficients of D a r e  usually higher degree 

polynomials in s. Starting with an approximate value of s and (X. )  , i t  is possi- 

ble to find a set of linear nonhomogeneous equations for the correction terms 
that have to be added to the approximate value of s and (X.)  . By developing 

equation (3) into a Taylor series at the point s 
order, the iteration procedure (1) is 

J 

( s) 

J 

1 
and neglecting terms of higher n 

4 



,- 

I -* 

I -  

where 

% 
ds . D' = d  

(Sn 1 

D 
-@-, each element of D To o b b i n d  ds is differentiated with respect 

( s) 
to s. The mmerica! precerhrre for  cqiiatioo ( 8) is as f~l lows:  

Rep I. - bsert first approximation of s = s ( O) - cjbtaiiicd f rom approx- n n  
imate root programs, sponsor load in choice, o r  the natural frequencies of the 
modes - into equation (3)  and solve for  the approximate eigenvectors (X.) by 

setting x ( n 

3 
equal to one. 

Step II. - Determine the right-hand side of equation (8) (-Y.) by using 
J the eigenvectors obtained in Step I. 

Step III. - Solve equation (8) for As.  The AX. are not needed, but could 
3 be solved for. 

(I) = s(O)  + A  Step N. - Calculate s 

Step V. - Check s versus a constant (0.001 + i 0.001). 

a. If either the real or  imaginary par t  is larger  than 0.001, 

begin Step I again with s( I) as s( O) and repeat the above 
step. 

b. If both real and imaginary parts are smaller than 0.001, 
the program has converged to  an eigenvalue. Using the 
eigenvalue, compute the ratios of the eigenvectors for the 
engine deflection /3 as described previously. 

C 

Step VI. - Print out results. 

Experience has shown that normalizing the eigenvectors in Step I by 
assuming X equal to one does not always give the best convergence. The con- 

vergence problem can be relieved by selecting the X. for normalization to cor- 

respond with the eigenvalue that you wish to find. This means that provisions 
must be made in the program for interchanging rows and columns of equation (4) 
before starting the iteration procedure with Step I. 

n 

J 

5 



Characteristic Equation Approach 

The other approach for solving equation (4) for  its eigenvalues is using 
the computer to expand the determinant of the coefficients D 

nomial. In general, two restrictions are imposed on solving the determinant: 
( I) the determinant must not be larger  than 10x10 (in our case, it is smaller) 
and (2)  the elements must be single polynomials in s, not ratios of polynomials. 
Equation (4) does not usually meet both of the requirements and must be altered. 
First, the important modes must be determined (not necessary for our system) ; 
and second, the determinant must be expanded by minors along the last row, since 
the last row contains ratios of polynomials. 

into a poly- 
(s) 

Equation (4) may be rewritten as 

- 
j(s)  

taken on the last row. T (4' 
where 3 
is a ratio of polynomials and can be wriiten as 

is the minor of the determinant D 
( S I  

Equation (9)  is rationalized and its numerator set equal to zero to solve 
the characteristic equation. The eigenvalues are the roots of the numerator. 
D is written in the form 

( s) 

After the eigenvalues have been determined, equation (8) must be solved for 
the normalized eigenvectors with an option to bypass. 

6 



The matrix iteration has two advantages: (I) only important roots are 
obtained, and (2) the size of the system is not critically limited. The disad- 
vantages of this method are: ( I )  more machine time is required, and (2) con- 
vergence is poor for high gains with a gain root locus study. 

The characteristic equation approach is advantageous because all roots 
can be found, less machine time is required, and gain root locus studies offer 
no adverse convergence problems. However, this approach can solve only 
smali systems. Systems with higher than 30th order create problems. 

Frequency Response 

The frequency response of the system to a sinusoidal forcing function at 
the control thrust vector point is easily obtained. From equation (3) we let CT of 
the assumed solution s be equal to zero and assume various values for  w within 
the interested frequency region. For each value of w , equation (3) is solved 
for  the unknown X. by assuming X (corresponding to pc equal to one). We 

set K1 equal to zero (see definitions of elements) . 
3 n - 

Using these frequency-dependent unknowns, a structural transfer func- 
tion can be obtained between a force applied at the swivel point and any sensor 
location. 

I. Between the thrust vector and a position gyro 

( x  is the position gyro location). 
g 

2. Between the thrust vector and a rate gyro, 

Other frequency responses can be obtained from equation (13) by solving 
for the ratios of certain unknowns. 

7 



BASIC PROCEDURES FOR ANALYZING 

The analysis to be done is either a conventional gain root locus o r  a phase 
root locus with a constant gain. In conventional graphical techniques, the phase 
root locus is much more difficult to construct than the gain root locus; however, 
for the numerical procedures presented in the report, these problems are elim- 
inated. A combination phase and gain program provides more information than 
a conventional root locus diagram [ 21 . 

For  a phase root locus equation (5) is written as 

n-1 

Because this is the control equation written in general form with all the 
transfer functions of the various control loops, a phase root locus can now be 
computed for the total system o r  for each control loop separately by writing 
KF's in the form 

J 
id, idA 

e K =-  and 
J J KA 

K? =K.e J 

Equation (13) then becomes 

Now K. contains the open loop gains of each loop as a parameter and is 

kept constant as the phase 6. is varied and the roots of equation (3 )  are com- 

puted for each value of 6.. 

J 

J 

J 
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The following block diagram depicts the system and procedure. 

.. 

Structural 
Response 

The matrix iteration procedure works much better for the phase root 
locus, since the complex elements introduced into the control equation do not 
cause any convergence problems. This is not always true in the root solving 
procedure for polynomials. 

EQUATIONS OF ELEMENTS 

The coefficients of s2A.. are as  follows: 
11 

Torsional Modes ( i  = 1 - 2) 
k. j =1-2* 

A.. =M -6 . .  
71 1J 11 

j =3-6 

A.. = O  
11 

j = 7  

Ai7 = deSe6 
l . I q  

9 



j = 8  

Ai* = 0 

Roll ( i  = 3) 

j = i - 2  

A = O  
3j 

j = 4 - 5  

n = I when j = 4  
n = 2  when j = 5 

2 
A = E M  ds  sn n 3j n=i 

j = 6  

A36 = O  

j = 7  

A37 = deSe 

j = 8  

A38 = O  

Sloshing Roll ( i  = 4 - 5) 

j =1-2 

Aij = O  

j = 3  

10 



Ai3 = ds i 

j = 4 - 5  

A..  = O  when i # j  
1J 

A..  = I  when i = j  
11 

j = 6 - - 8  

A. .  = O  

Rate Gyro Roll ( i  =6)  

9 

j = I - 5  

j = 6  

j = 7 - 8  

Swivel Engine ( i  = 7) 

j = I - 2  

j = 3  

deSe 

e e  
2 A73 = 



j = 4 - 6  
.. . 

A = O  
71 

j = 7  

The coefficients of s B.. are as follows: 
11 

Torsional Modes ( i  = 1 -2) 

j = I - 2  

B.. = 25 .w .M .d.. 
13 71 T1 71 1J 

j = 3 - 8  

B.. = O  
9 

Roll ( i  = 3) 

j = I - 8  

B = O  
3j 

Sloshing Roll ( i  = 4 - 5) 

j = 1 - 3  

B.. = O  
4 

j ' 4 - 5  

12 



j = 6 - 8  

B.. = O  
11 

Rate Gyro Roll ( i  = 6 )  

j = 1 - 2  

j = 3  

j = 4 - 5  

j = 6  

j = 7 - 8  

Swivel Engine ( i  = 7 )  

j = 1 - 6  

B = O  
7j 

j = 7  

13 



j = 8  

The constant coefficients of C.. are as follows: 
11 

Torsional Modes ( i  = I -2) 

j = I - 2  

C.. =o ?MTiSij 11 71 

j = 3 - 6  

c.. = o  
1J 

j = 8  

Ci8 = 0 

Roll ( i  = 3) 

j = I - 6  

c = o  
3j 

j = 7  

C37 = deF 
5 

14 



Sloshing Roll (i = 4 - 5) 

j = 1 - 3  

c.. = o  
1J 

j = 4 - 5  

c.. = w  3.. 
11 s 1  1J 

j = 6 - 8  

c.. = o  
13 

Rate Gyro Roll ( i  = 6) 

j = 1 - 5  

Swivel Engine (i = 7) 

j = 1 - 6  

c = o  
7 j  

j = 7  

c77 = 1 

15 



Control Equation ( i  = 8) 

j = 3  

i Lil 
C, =-a A T o r  ( s )  g(s)Kie 

j = 4 - 5  

j = 6  

j = 7  

j = 8  

.. 
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APPENDIX 

Roll Equations 

The equations of motion for the roll stability program are derived using 
Lagrange's equation. The torsion, roll, roll sloshing, and swivel engine equations 
were derived, while the rate gyro equation w a s  obtained from Reference 3. The 
longitudinal acceleration was  eliminated from the equations of motion because of 
its'negligible influence on the final results. 

I. Lagrange's Equation 

aD 
- Qi , 

where L = T  - V. 

T is the kinetic energy, and V is the potential energy of the system, while 
D is the dissipation function, and Qi's a re  the generalized forces. 

The generalized coordinates, 3, for  the derivation are: 

Torsional twist 

Rigid body roll angle 

P 
q, = 7 

q2 = e  

q3 = t s  Roll sloshing displace me nt 

s4 = Or Rate gyro roll 

95 = Pe Swivel engine 

2. Kinetic Energy 

a. Airframe 

The kinetic energy of the airframe depends on the rotation of each 
element, which is the sum of the rigid body roll angle and the torsional twist. The 
angular velocity about the missile centerline is 

17 



The kinetic energy is given by 

where I is the axial distribution of the roll mass moment of inertia. 
( x) 

( 4) R '  But JI(x)  dx = I  
A 

where IR is the total  moment of inertia of the airframe about the centerline and 

dx = 0 (end torque). ( 5) 

. 
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A1 so, 

T = - I ~ ' + - ~ M  i I i 2 .  
A 2 R  2 v P 

P 

b. Liquid propellant 

The outer clustered tanks of a Saturn type space vehicle are com- 
bined into two tanks for the spring-mass model (Fig. I). Springs and dashpots 
a r e  used to attach the oscillating masses to the tank wall. 

The angular velocity at any station x is 

where dsn is the distance from the centerline of the vehicle to the sloshing mass 

( n  = i , 2 ) .  

Hence, the kinetic energy is given by 

i I 
T = - E M  sn V s(x) 2 = - c M  2 sn ( d s 8 ' + i ) 2 d x  n S 

n n ( s )  2 

19 



c. Swivel engine 

The angular velocity of the gimbal rotation is given by (Fig. 2) : 

Therefore, the linear velocity at the gimbal station is 

where de is the distance from the missile centerline to the swivel engipe. The 
Con- (x)'e* velocity of a point on the engine relative to the gimbal is given by d 

sequently, the velocity of a point on the engine is given by 

and the kinetic energy of the system.is 

when e is the moment of inertia of the engine about the gimbal plane; and e 

where I is the moment of inertia of the engine about the missile centerline. r 

20 



where Se is the static moment of inertia of the engine a'uout the gimbal. 

Hence, the kinetic energy of the engine is 

3. Potential Energy 

a. Airframe 

The torsional vibration comprises the total potential energy of the 
airframe. 

I 
'A 2 

= -  X M  u2 , 
TP T P  P 

P 

where w is the torsional natural frequency and M is the generalized torsional 
mass. TP T P  

b. Liquid propellant 

The potential energy usually a r i ses  from three sources, but in roll 
only the strain energy contained in  the spring of the mechanical analogy is used. 

I I 
V = - k  [ 2 = z c M  u 2  t2  s 2 n s  sn sn  s ' n 

where k is the spring constant of the slosh mass. n 

c. Swivel engine 

The swivel engine is coupled with the roll control system, and the 
dynamics of the swivel engine can be described by the simple spring-mass-damper 

21 



system. The actual potential energy is determined by an  effective spring constant 
and damping coefficient of the gimbaling system. 

where k is the spring constant and we is the natural frequenay of the swivel engine. e 

4. Dissipation Function 

a. Airframe 

The dissipation of the empty airframe arises from its structural 
damping, which is a function of the 

where g is the torsional damping 

b. Liquid propellant 
TI-1 

torsional twist and not of its frequency. 

(21) 

of the structure. 

The dissipation of the liquid propellant is represented by an equiva- 
lent dashpot associated with the mechanical model. 

where g is the propellant damping. sn 

c. Swivel engine 

The damping of the swivel engine is of minor importance and can be 
neglected, but the viscous damping of the actuator is proportional to the difference 
in the velocities of the command signal and the engine deflection; 

I I 
D = - C  (i - i C j 2  = - g  6 a (j - ic)2 e 2 e e  2 e e e  e 

where g is the swivel ,engine damping. e 

22 



5. External Forces 

The only external force considered in this derivation is the swivel thrust. 
The drag, aerodynamic forces, and forces caused by the flowing propellants are 
neglected. 

and w e  may w r i t e  

sin p e -'e 

Qe = deF sin(-@ ) = -de$' p 
S e s e  

Q t s = Q O n = Q  =o. 
@e 

6. Equations of Motion 

a. The kinetic potential, L, is given by 



b. The dissipation function, D, i s  given by 

c. The equations of motion a re  written with the aid of Lagrange's 
equation: 

(I) Torsion equation ( T ) 
P 



Hence, the torsional equation is 

(2) Roll equation ( e )  

aL 
ae e 
-=hi + E M  d s 2 i  + E M  ds i +de&& 

sn n sn n s n n 

(-)=Is + E M sn  ds2 n + E M  sn d s  n s + deSeie 
n n 

dt a 6  

Q 6 = - d e  F p s e  

Hence, the roll equation is 

I , ? + c M  d s 2 i  + E M  ds i' +deF + d e F  p = O .  
s n  n sn  n s s e  s e  n n 

25 



( 3 )  Sloshing roll equation ( 5  S ) 

n n 

- - = E M  aD w g 
sn sn  sn s n 

Heme, the sloshing roll equation is 

Dividing through by the sloshing mass, 

ds n 'e'+ F S + 2 w  sn 1 sn  i s + u i n t s =  0. 

(4) Rate gyro roll equation ( O r )  

The rate gyro equation is obtained from Reference 3,  but can 
easily be converted to roll. 

26 
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The rate gyro i s  included as a separate equation because it is nonideal. 
Hence, the rate gyro roll equation is 

( 5) Swivel engine equation ( p  ) e 

aL 
7 = 6 + deSe6 +deSe 2; 0 

e e  P 
P 

-- - e  ~ 2 p  - e  028 aL 
ape e e c  e e e  

- -  - g e w j  - g e u j  aD 
abe e e e e  e e e c  

1 -  

I 

i .  

Q = O  
Be 

Hence, the swivel engine equation is 

27 



- 2 g  w e j  - e  ~ 2 p  = o .  e e e c  e e c  

Dividing by 8 u2 : e e  

dese e .. 
e w2 o2 

- p  = o  . (33) 
5, - - 2ce + -  +- + -  p p(x t )  deSe? 'e 

w 'e + 'e w 'c c e e  e e e eeW: 

( 6 )  Control Equation 

With filters and actuator 

i6A id, e 
-a T A 8 K2e +- p = o .  

KA 
i r  r(s)  ( s )  r (35)  

28 
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FIGURE I. SLOSH MECHANICAL MODEL 
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FIGURE 2. SWIVEL ENGINE MODEL 
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